模擬降水粒子によるミリ波後方強調散乱の

計算機シミュレーション

小口 知宏¹ 井原俊夫²

¹関東学院大学工学総合研究所 ²関東学院大学工学部電気·電子工学科

1. はじめに

衛星搭載降雨レーダの雨量測定精度向上などのために、マ イクロ波だけでなくミリ波の様な高い周波数帯をも用いる計画 がある[1]. この様な高い周波数になると、雨滴間の多重散乱 が無視出来なくなり、特にレーダのように送受信アンテナがほ ぼ同一位置にある場合,後方強調散乱と言われる現象が生じ ている可能性がある[2,3]. 多重散乱とその強調が起こってい る場合に通常の雨量推定アルゴリズムを用いると,推定された 雨量に誤差を生ずる事になる. 強調が本当に起こるのか, ま た強調の程度はどのくらいになるかを調べるために、模擬降 水粒子を用いた室内モデル実験の計画が進んでいる[4]. こ の計画と平行して実験モデルに対応する計算機シミュレーシ ョンも行っている. シミュレーションに関しては、平面スラブ領 域での Rayleigh 散乱体に対するモンテカルロシミュレーション なども試みられているが[5]、ここでは出来るだけ実験の条件 を正しく再現するようにモデル化し、とりあえず第一段階として 最も単純な,正直な方法でどこまで問題に対処出来るかを調 べてみた.本稿では今までに得られた結果と問題点について 報告する.

2. モデル実験

後方強調散乱を調べるためのモデル実験シムテムを図1に 示す.散乱体は水入りポリスチロール球で,これをポリフォー ム厚板中に埋め込んで積み重ねたものが散乱体積となる.散 乱計はネットワークアナライザを用いる30GHz帯のもので,直 線偏波,円偏波の切り替えとポラリメトリック測定が可能である [4,6].従来の研究結果から強調の現象は散乱角が1°以下の 所で起こることが予測されるため[7],送受信アンテナの間隔を 狭くしてその存在を調べるのであるが,従来の配置(a)では散 乱角を1°以下にすることが物理的に不可能であった.現在計 画中の配置(b)では,この点を改善するために受信アンテナと 散乱体の間にガラス板を置き,ガラス板の反射・透過特性を利 用して等価的に送受信アンテナの作る散乱角が1°以下に出 来る様にしている.

3. 散乱の過程と基本式

2回以上の散乱では図2に示すように1→2,2→1の様に互いに逆周りの経路が存在する.送受信アンテナが同一地点にあると、これらの経路の波は同位相で加算されるので強め合い(強調散乱)、二つのアンテナが離れると位相差が生じてこの様な加算は起こらなくなる.また、3回散乱では3の散乱体が1の散乱体そのものになる場合もあり、このときは上のような

二つの経路は存在しない.

(b) 計画中の配置

図1 モデル実験システム

なお,通常のレーダ方程式で解析の対象となるのは,一番上の経路である1回散乱のみである.

この様な波の干渉を式で表すと以下のようになる.水平および 垂直偏波の電界を, *E*_bおよび *E*_vとし, この二つを纏めて

図3 記号の説明図

$$\mathsf{E} = \begin{bmatrix} E_h \\ E_\nu \end{bmatrix} \tag{1}$$

の様に表し、コヒーレンシー・マトリクスの要素を縦並びにした ものをDで表すと、Dは

$$\mathsf{D} = \mathsf{E} \otimes \mathsf{E}^* \tag{2}$$

と書ける. 記号 \otimes はクロネッカー積である. 経路1 \rightarrow n,およ びn \rightarrow 1の散乱を繰り返した後の受信電界を $E^{(1,n)}$, $E^{(n,1)}$ と書くと, Dは

$$D = (E^{(1,n)} + E^{(n,1)}) \otimes (E^{(1,n)^*} + E^{(n,1)^*})$$

= $(E^{(1,n)} \otimes E^{(1,n)^*} + E^{(n,1)} \otimes E^{(n,1)^*})$
+ $(E^{(1,n)} \otimes E^{(n,1)^*} + E^{(n,1)} \otimes E^{(1,n)^*})$ (3)

と書ける. (3) 式最後の上下の括弧が, 散乱問題で ladder term, cyclical term と云われるものに相当する. アンテナ出力ポートにおける等価的な電界 E⁰ と E^(1,n)の関係 は, 図3に示す各記号を用いて

$$\mathsf{E}^{(1,n)} = \left\{ \frac{\exp\left[-ik(R_{0}^{(n,r)} + R_{0}^{(t,1)})\right]}{R^{(n,r)}R^{(t,1)}} \right\}$$

$$\exp\left[-ik_{e}(\Delta R^{(n,r)} + \Delta R^{(t,1)})\right]$$

$$\prod_{i=1}^{n-1} \left\{ \frac{\exp(-ik_{e}\Delta R^{(i,i+1)})}{\Delta R^{(i,i+1)}} \right\} F_{e}^{(n,r)}F_{e}^{(t,1)}\mathsf{S}^{(1,n)}\mathsf{E}^{0}$$
(4)

と書ける. E^(n,1)についても同様に

$$\mathsf{E}^{(n,1)} = \left\{ \frac{\exp\left[-ik\left(R_{0}^{(1,r)} + R_{0}^{(t,n)}\right)\right]}{R^{(1,r)}R^{(t,n)}} \right\}$$
(5)
$$\exp\left[-ik_{e}\left(\Delta R^{(1,r)} + \Delta R^{(t,n)}\right)\right]$$
(5)
$$\prod_{i=1}^{n-1} \left\{ \frac{\exp(-ik_{e}\Delta R^{(i,i+1)})}{\Delta R^{(i,i+1)}} \right\} F_{e}^{(1,r)}F_{e}^{(t,n)}\mathsf{S}^{(n,1)}\mathsf{E}^{0}$$

と書ける. kは自由空間の伝搬定数, k。は散乱体積内部の平均伝搬定数である.送信点(t)は座標の原点にあり,受信点

(r)はz=0の平面上任意の位置(x_r, y_r, 0)にあるとする.ただし,受信アンテナのビームセンターは常に散乱体積の中心を向いている.これらの記号と送受信アンテナ,および散乱体の座標ベクトルとの関係は付録 A に示す. S^(1,n), S^(n,1) は

$$\mathbf{S}^{(1,n)} = \mathbf{S}^{(n)} \mathbf{S}^{(n-1)} \cdots \mathbf{S}^{(2)} \mathbf{S}^{(1)}$$
$$\mathbf{S}^{(n,1)} = \overline{\mathbf{S}}^{(1)} \overline{\mathbf{S}}^{(2)} \cdots \overline{\mathbf{S}}^{(n-1)} \overline{\mathbf{S}}^{(n)}$$
(6)

であり、行きと帰りの経路についてn個の散乱マトリクスを全て 掛け合わせた物である. S の上付のバーは帰りの(時間反転) 経路であることを表す. また、n=1の場合は

$$\prod_{i=1}^{n-1} \{\cdots\} = 1 \tag{7}$$

と置く.

$$F_{e}^{(i,j)} = \exp\left[-2\left(\frac{\theta^{(i,j)}}{\theta_{b}}\right)^{2}\log_{e}2\right]$$
(8)

$$F_{p}^{(i,j)} = \left(F_{e}^{(i,j)}\right)^{2}$$
(9)

一方、散乱マトリクスについては、何回かの散乱を繰り返し ても、時間反転経路と元の経路に対する散乱マトリクスの間に は

$$\mathbf{S}^{(n,1)} = \mathbf{Q}\mathbf{S}^{(1,n)^{\mathrm{T}}}\mathbf{Q}$$
(10)

の様な reciprocity の関係が成り立つ. ここでQは

$$\mathbf{Q} = diag(-1,1) \tag{11}$$

で与えられる対角マトリクスである.なお、本報告では常に波 の進行方向を基準にとる座標表示(FSA 表示)を用いる.これ らの関係を(3)式に適用すると

 $\mathsf{E}^{(1,n)}\otimes\mathsf{E}^{(1,n)^*}$

$$= \left\{ \frac{\exp\left[2 \operatorname{Im}(k_{e})(\Delta R^{(t,1)} + \Delta R^{(n,r)})\right]}{\left(R^{(t,1)}R^{(n,r)}\right)^{2}} \right\}$$
(12)
$$\prod_{i=1}^{n-1} \left\{ \frac{\exp\left[2 \operatorname{Im}(k_{e})\Delta R^{(i,i+1)}\right]}{\left(\Delta R^{(i,i+1)}\right)^{2}} \right\}$$
$$F_{p}^{(n,r)}F_{p}^{(t,1)}(\mathsf{S}^{(1,n)} \otimes \mathsf{S}^{(1,n)^{*}})(\mathsf{E}^{0} \otimes \mathsf{E}^{0^{*}})$$

 $\mathsf{E}^{(1,n)} \otimes \mathsf{E}^{(n,1)^*}$

$$= \left\{ \frac{\exp\left[-ik(R_{0}^{(t,1)} - R_{0}^{(1,r)} + R_{0}^{(n,r)} - R_{0}^{(t,n)})\right]}{R^{(t,1)}R^{(1,r)}R^{(n,r)}R^{(t,n)}} \right\}$$

$$\exp\left[-ik_{e}(\Delta R^{(t,1)} + \Delta R^{(n,r)})\right]\exp\left[ik_{e}^{*}(\Delta R^{(1,r)} + \Delta R^{(t,n)})\right]$$

$$\prod_{i=1}^{n-1} \left\{ \frac{\exp\left[2\operatorname{Im}(k_{e})\Delta R^{(i,i+1)}\right]}{(\Delta R^{(i,i+1)})^{2}}\right\} F_{e}^{(n,r)}F_{e}^{(t,1)}F_{e}^{(1,r)}F_{e}^{(t,n)}$$

$$(S^{(1,n)} \otimes QS^{(1,n)^{T*}}Q)(E^{0} \otimes E^{0*})$$
(13)

と書ける. ただし, n=1の場合は

と置く. ここでの番号付け 1, 2, …, n は散乱体に固定された 番号ではなく, 単に1回目, 2回目, …, n回目に散乱したこと を表す物であることに注意されたい.

4. シミュレーション計算

4.1 モデル化

図3に示すようにモデル化では出来るだけ実験の配置,パラ メータに合うようにした.送信波は散乱体積までは自由空間の, 散乱体積内では内部の平均伝搬定数を持つ球面波で伝搬 する.送信アンテナを固定し,受信アンテナの位置は可変と する.散乱の計算では各散乱回数ごとに D の加算を行い,異 なった散乱回数のものとは経路長の相関が無いと考えられる 事から独立であるとしている.

4.2 計算の手順

球体の散乱マトリクスを計算するためには、球体への入射 角、散乱角を知る必要がある.ここで各球体の中心を原点とす る局所的な座標系(x', y', z')を導入する.z'は常に上向き (散乱計システムの座標ではy軸方向)にとり、入射波の進行 方向単位ベクトルがx'z'平面上に乗るようにx'の方向を定め る.x', y', z'を基準とする球座標での入射角 α ,散乱角 θ , ϕ は前後の散乱体の位置ベクトルから求められる(付録 B 参 照).同様の方法で各散乱体について入射角、散乱角を次々 に求めることが出来る.

球体の場合には、入射波と散乱波の作る散乱平面上での 散乱マトリクスを計算しておけば、上述の球座標を基準とした 散乱マトリクスに変換することは容易である(付録 C 参照). 従って前もって計算し、ファイルに保存する散乱マトリクス・デ ータは、この球の散乱平面上の多くの散乱角について求めた 物である.

次に乱数を発生, 散乱体の3次元的にランダムな配置を与 える. 散乱体のn個の組み合わせについて, 散乱マトリクス・デ ータを参照しn回散乱を計算, これを全てのn個の組み合わせ について加え合わせる. ここで加算は(3)式の上下括弧中の 第一項のみについて行う. 第二項は逆の散乱経路の場合に 計算される. ついで新しい乱数を発生, 散乱体の配置を変え て上の計算を再び実行, これを32回行う. この32回の平均を とった物が最終データとなる. この手順を必要な散乱角につ いて繰り返し行う.

4.3 計算のパラメータ

今回の計算に用いたパラメータを表1に示す.このパラメー タは以前に行った散乱実験の際のパラメータと同じ物にして いる[6].

表1 シミュレーション計算のためのパラン

周波数:30 GHz

散乱体積の大きさ:90cm×90cm×180cm
散乱球の大きさと数:半径1.25cm, 1736 個
送信アンテナから散乱体積前面までの距離:1m
送信および受信アンテナのビーム幅:25°
送受アンテナの作る散乱角の範囲:0°~3°
送信電力:0 dBm
送受アンテナの利得:17.2 dB

5. 計算結果および考察

1回から3回散乱において、散乱角と受信電力の関係を入射 波と同一の偏波と交差偏波について計算したものを、図4およ び図5に示す.入射波は電界が単位の大きさの H 偏波とする. 記号 l, c はそれぞれ ladder term, cyclical term を表す. 真 後ろ(散乱角 0[°])への1回散乱の強度 P_r は

$$P_{r} = \frac{P_{t}G_{t0}G_{r0}\lambda^{2}}{(4\pi)^{2}}(\mathsf{D})_{1}$$
(15)

で与えられる. ここで P_t は送信電力, G_{a0} G_{a0} はそれぞれ送受 信アンテナのビームセンターでの利得, λ は波長である. 計 算された **D** の値を代入すると受信電力は-59.7dBm, これに対 し従来のレーダ方程式による値は-59.6dBm でほぼ完全に一 致している.

図5 散乱角と受信電力の関係 (交差偏波)

2回,3回散乱では散乱角0°付近で強調が起こっている事が 分かるが,特に交差偏波で顕著である.2回散乱では散乱角 0°で ladder term と cyclical term の値は同じとなるが,3回 散乱では cyclical term の値は ladder term の値に比べかな り小さくなる.これは図2に示す様に3回散乱では1→2→1の 経路があるためであるが,予想より減少の割合は大きい.強調 の起こる散乱角の範囲は,波長を散乱の平均自由行程で割 った程度であると云われているが[7],今回の散乱パラメータか ら求めた値は約 0.8°であり,オーダとしては合致している.

4回以上の散乱は現実的な計算時間をはるかに超えるため, 今回は計算出来なかった.しかし,2回散乱に比べ3回散乱が あまり小さくなっていない事から、4回以上の散乱の評価が多 重散乱全体の大きさの定量的評価に必要な事が分かる. 完 全に同じモデルではないが、今回の計算に用いたのと同じ散 乱体を同じ密度で埋め込んだ厚さ 1.8m の平面スラブに平面 波が入射した場合, 放射伝達方程式から求めた ladder term 全体の値はほぼ1回散乱の値と同程度になる. Mishchenko に よると同一偏波に対する強調の割合(enhancement factor) ζ は

$$\varsigma = \frac{G^1 + 2G^L}{G^1 + G^L} \tag{16}$$

で与えられる[8]. ここで G, G はそれぞれ1回散乱, ladder term の電力に比例する量である.上述の放射伝達方程式に よる ladder term の値が正しいとすれば、今回のモデルに対す る enhancement factor は 1.5 となる.

ランダム配置ごとの受信電力の変動(1回散乱)

図6,7にランダム配置ごとの受信電力の変動を示す. 散乱回数を一定にした条件のもとでの変動であるから受 信電力全体の変動とは云えないが、実験で行う32回の平 均操作はほぼ十分であると云えそうである.表2に計算に 要する時間を纏めた. 散乱回数を増やすことは上限が散乱 体数(1736)の Do loop を増やす事になるので、散乱回 数が増えるとすぐに非現実的な時間が掛かるようになる.

6. まとめ

直接的な計算機シミュレーション法を用いて1回から3回散

表2 計算に要する時間*

散乱回数	ランダム数起動	計算時	間備考
1回	32回	2分	球の散乱マトリクスはサ
			ブ・ルーチンによる.
2回	32回	16分	球の散乱マトリクスは散
			乱平面上 0.001 [°] おきに
			計算したデータによる.
3回	1回 12	時間40	分
			球の散乱マトリクスは散
			乱平面上 0.1 ゚おきに計
			算したデータによる.
4回	1回 ~	916 日	同上
	1回 (~2	22 時間)	スーパーコン,或いは PC
			クラスターで 1000 倍の速
			度が得られたとした場合

*計算は CPU Pentium 4, クロック 2GHz の PC による

乱までの計算結果を得た、これから散乱角1°以内で強調散乱 が起こることが確認出来た. 特に, 交差偏波で強調の効果は 顕著である.強調の起こり方は入射波が平面波か球面波かに は無関係の様である.また,4回以上の多重回散乱の影響が 無視出来ない程度に大きそうなことが分かった. 今回の直接 的方法で,現実的な時間内で4回以上の多重回散乱の計算 を行うにはどうすればよいか、不正直(?)な方法による計算と その正確さの検討などが今後の課題である.

参考文献

[1]http://www.eorc.nasda.go.jp/TRMM/gpm/index j.htm

[2] Yu. N. Barabanenkov, Yu. A. Kravtsov, V. D. Ozrin, A. I. Saichev, "Enhanced backscattering: The universal wave Phenomena", Proc. IEEE, Vol.79, No.10, pp.1367-1370 (1991). [3] 岩井俊昭, 岡本卓, 朝倉利光, "光散乱現象研究の展開 一単一散乱から多重散乱まで一",応用物理,第63巻,第1 号, pp. 14-22(1994).

[4] 井原俊夫, 小口知宏, 田崎民生, 金子和正, "模擬降水 粒子によるミリ波後方強調多重散乱の測定法の検討",2002 年度関東学院大学工学部研究発表会, 75, pp.149-150 (2002).

[5] M.P.van Albada, A.Lagendijk, "Vector character of light in weak localization: Spatial anisotropy in coherent backscattering from a random medium", Physical Review B, Vol.36, No.4, pp.2353-2356 (1987).

[6] T.Tazaki, H.Tabuchi, K. Ikeda, T.Oguchi, S.Ito, "Laboratory measurements of polarimetric radar signatures of randomly distributed spherical and spheroidal scatterers at 30 GHz", IEE Proc.-Mocrow. Antennas Propag., Vol.147, No.1, pp.8-12 (2000)

[7] Y.Kuga, L.Tsang, A.Ishimaru, "Depolarization effects of the enhanced retroreflectance from a dense distribution of spherical particles", JOSA Communications, Vol.2, No.4, pp.616-618 (1985)

[8] M. I. Mishchenko, "Enhanced backscattering of polarized light from discrete random media: calculations in exactly the backscattering direction", J. Opt. Soc. Am. A/ Vol.9, No.6, pp.978-982 (1992).

[9] S. Chandrasekhar, "Radiative Transfer", Dover (1960).

付録A

図3の各記号と座標ベクトル等の関係を纏めておく.送信点 tから散乱体 iまでの長さは自由空間部分と散乱体積内部の 部分の和で

$$R^{(t,i)} = |\mathbf{r}_i| = R_0^{(t,i)} + \Delta R^{(t,i)}$$
(A-1)

ただし

$$R_0^{(t,i)} = \frac{z_0 |\mathbf{r}_i|}{\mathbf{\vec{k}} \bullet \mathbf{r}_i}$$
(A-2)

$$\Delta R^{(t,i)} = \left| \mathbf{r}_i \right| \left(1 - \frac{z_0}{\dot{\mathbf{k}} \bullet \mathbf{r}_i} \right)$$
(A-3)

と書ける. k は2軸方向の単位ベクトル, Zo は散乱体積前面の 2座標である. 同様に散乱体 iから受信点 rまでの長さも

$$R^{(r,i)} = \left| \mathbf{r}_{i} - \mathbf{r}_{r} \right| = R_{0}^{(r,i)} + \Delta R^{(r,i)}$$
(A-4)

$$R_0^{(r,i)} = \frac{z_0 |\mathbf{r}_i - \mathbf{r}_r|}{\vec{\mathbf{k}} \bullet (\mathbf{r}_i - \mathbf{r}_r)}$$
(A-5)

$$\Delta R^{(r,i)} = \left| \mathbf{r}_i - \mathbf{r}_r \right| \left(1 - \frac{z_0}{\dot{\mathbf{k}} \bullet (\mathbf{r}_i - \mathbf{r}_r)} \right)$$
(A-6)

となる.また、二つの隣り合う散乱体間の長さは

$$\Delta R^{(i,i+1)} = \left| \mathbf{r}_{i+1} - \mathbf{r}_{i} \right| \tag{A-7}$$

である. 送受信アンテナのビームセンターと散乱体 *i*のなす角は, それぞれ

$$\boldsymbol{\theta}^{(t,i)} = \cos^{-1} \left(\vec{\mathbf{k}} \bullet \frac{\mathbf{r}_i}{|\mathbf{r}_i|} \right)$$
(A-8)

$$\theta^{(r,i)} = \cos^{-1}\left(\vec{\mathbf{k}}_r \bullet \frac{\mathbf{r}_i - \mathbf{r}_r}{|\mathbf{r}_i - \mathbf{r}_r|}\right)$$
(A-9)

で与えられる. ただし、 \mathbf{k}_r は受信アンテナのビームセンター 方向の単位ベクトルである.

付録B

散乱体 *i*の散乱マトリクスを計算するための入射角 α ,散乱 角(θ , ϕ)は散乱体 *i*と前後の散乱体 (*i*-1,*i*+1)の位置 ベクトルを用いて以下のように書ける(図 B-1参照).図 B-1の 座標(x'、y'、x')は各散乱体に付随した局所的な座標系で ある.

$$\alpha = \cos^{-1}(-\vec{\mathbf{j}} \cdot \vec{\mathbf{k}}_i) \tag{B-1}$$

$$\boldsymbol{\theta} = \cos^{-1}(\mathbf{\vec{j}} \bullet \mathbf{\vec{k}}_{i+1}) \tag{B-2}$$

$$\phi = \cos^{-1}\left(-\vec{1}_{i} \bullet \vec{1}_{i+1}\right) \tag{B-3}$$

ただし

$$\vec{\mathbf{k}}_{i} = \frac{\mathbf{r}_{i} - \mathbf{r}_{i-1}}{\left|\mathbf{r}_{i} - \mathbf{r}_{i-1}\right|} \tag{B-4}$$

$$\vec{\mathbf{l}}_{i} = \frac{(\mathbf{r}_{i} - \mathbf{r}_{i-1}) - (\mathbf{r}_{i} - \mathbf{r}_{i-1}) \bullet \vec{\mathbf{j}} \, \vec{\mathbf{j}}}{\left| (\mathbf{r}_{i} - \mathbf{r}_{i-1}) - (\mathbf{r}_{i} - \mathbf{r}_{i-1}) \bullet \vec{\mathbf{j}} \, \vec{\mathbf{j}} \, \vec{\mathbf{j}} \right|} \tag{B-5}$$

である.ただし、 \mathbf{j} は散乱実験の座標系でのy軸方向単位ベクトルである.

付録 C

球体の散乱では、入射波と散乱波の作る散乱平面を偏波 基準とする散乱マトリクスから球座標基準のものに変換 することは容易である[9].

図 C-1 球体の散乱平面

図 C-1 で座標原点と入射波・散乱波の作る球の散乱平面 上での散乱マトリクスを S'(θ_s)と書くと, 球座標上の 散乱マトリクス S(θ , ϕ ; θ ', ϕ ')との関係は

$$\mathbf{S}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{\theta}', \boldsymbol{\phi}') = \mathbf{R}(\boldsymbol{\alpha}_2 + \pi/2)\mathbf{S}'(\boldsymbol{\theta}_s)\mathbf{R}(\boldsymbol{\alpha}_1 + \pi/2)$$
(C-1)

と書ける. ただし,

$$\theta_{s} = \cos^{-1} \left[\cos \theta' \cos \theta + \sin \theta' \sin \theta \cos(\phi' - \phi) \right]$$
 (C-2)

$$\alpha_{1} = \cos^{-1} \left\{ \frac{1}{\sin \theta_{s}} \left[\cos \theta \sin \theta' - \sin \theta \cos \theta' \cos(\phi' - \phi) \right] \right\}$$

$$\alpha_{2} = \cos^{-1} \left\{ \frac{1}{\sin \theta_{s}} \left[\cos \theta' \sin \theta - \sin \theta' \cos \theta \cos(\phi' - \phi) \right] \right\}$$
(C-3)

であり, またRは

$$\mathsf{R}(\beta) = \begin{bmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{bmatrix}$$
(C-4)

で与えられる偏波の回転マトリクスである.