ポイントターゲットによるポラリメトリック SAR 較正手法の評価

古谷友博, 麻生雄一郎, 野田英一, 福地一, 佐竹誠† 首都大学東京大学院 [†]情報通信研究機構

1. はじめに

我が国が現在運用中である陸域観測衛星 ALOS には、最新鋭の合成開口レーダ(SAR)である PALSAR が 搭載されている。PALSAR は世界で初めての衛星搭載フルポラリメトリック SAR であり、水平・垂直の 直線偏波で観測を行うことができる。しかし、PALSAR 観測高度は約 700km であり眼下に数百 km もの電 離層を抱える為、電波伝搬の際にファラデーローテーション(FR)により直線偏波の偏波面が回転し、観測 データに誤差をもたらす懸念がある。

ALOS/PALSARの較正に関して、FRの影響の除去、少数の反射器を用いて少ない仮定の下に簡単で正確な較正が行えること、この2点は重要な点である。

そこでFRの影響を考慮したポラリメトリック較正法(手法1[1])と、FRは考慮しないが背景シーンの 仮定を置かず少数の反射器による較正法(手法2[2])、そしてFRの推定精度を向上させた新しい手法(提案 手法)の評価を、PALSAR 観測データを用いて行う。FR を含む較正手法については既に提案されている が、アンテナクロストークを無視するなどの仮定がみられる。本報告で紹介する手法は全てアンテナのク ロストークも加味し、さらに背景シーンの仮定も行わないという利点を持っている。紹介する手法の中で、 これまでに実際の SAR データへの適用が行われたのは手法2のみであり、手法1と提案手法は初の SAR データへの適用となる。結果の概要は、手法1のFR 角の推定には誤差が見られ、手法2はアルゴリズム 内で考慮していない反射器の較正精度が低い。一方で、提案手法はそれらの問題を概ねクリアしており、 紹介する手法の中では最も優れた較正手法であると考えられる。

2. 較正手法

2.1 手法1 (Fujita-Sugiyama method) [1]

FR を考慮した SAR の観測モデルは次式で与えられる。

$$\boldsymbol{M} = a\boldsymbol{R}^T \boldsymbol{F} \boldsymbol{S} \boldsymbol{F} \boldsymbol{T} + \boldsymbol{N}$$

(1)

ここに、 $M \ge S$ はそれぞれ観測、散乱行列、 $R \ge T$ は受信・送信アンテナの偏波行列である。Fは FR 行列、Nはノイズ行列である。(1)式の振幅に関する項 $a \ge N$ を無視し、さらに $R \ge T$ において HH(水平偏波送信水平偏波受信)成分で規格化すると以下のようになる

$$\begin{pmatrix} m_{hh} & m_{h\nu} \\ m_{\nu h} & m_{\nu \nu} \end{pmatrix} = \begin{pmatrix} 1 & C_2 F_R \\ C_1 & F_R \end{pmatrix}^T \begin{pmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{pmatrix} \begin{pmatrix} S_{hh} & S_{h\nu} \\ S_{\nu h} & S_{\nu \nu} \end{pmatrix} \begin{pmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{pmatrix} \begin{pmatrix} 1 & C_2 F_T \\ C_1 & F_T \end{pmatrix}$$
(2)

ここに、 $C_1 \ge C_2$ はクロストークファクター、 $F_R \ge F_T$ はそれぞれ受信・送信アンテナのチャンネルイン バランスであり、 Ω はFR角である。本手法では以下の3基の参照反射器を用いる。

- ➤偏波保存型反射器 (Trihedral or Plate)
- ►水平偏波選択型反射器 (H-Selective)
- ➤偏波回転型反射器 (Rotating)

観測データから得られる3つの観測行列から、クロストークの2次の項を無視することで、FR 角Ω、C_l と

 C_2 、 F_R と F_T はそれぞれ以下のように求められる。

$$\Omega = \tan^{-1} \left(-\frac{m_{vv}^{h-sel}}{m_{hh}^{h-sel}} / \frac{m_{vv}^{tri}}{m_{hh}^{tri}} \right)^{\frac{1}{2}}, \quad F_{R} = \pm \sqrt{\frac{m_{vv}^{tri}}{m_{hh}^{tri}} \cdot \frac{m_{vh}^{rot}}{m_{hv}^{tri}}}, \quad F_{T} = \frac{m_{vv}^{tri}}{m_{hh}^{tri}} / F_{R}, \quad C_{1} = \frac{m_{hh}^{rot}}{m_{hv}^{rot}} \cdot \frac{F_{T}}{2}, \quad C_{2} = \frac{m_{vv}^{rot}}{m_{hv}^{rot}} \cdot \frac{1}{2F_{R}}$$
(3)

添え字右下は偏波を、右上は反射器を表す(tri = Trihedral (偏波保存型)、h-sel = H-Selective (偏波選択型)、rot = Rotating (偏波回転型))。

2.2 手法 2 (Fujita-Murakami method) [2]

送受信のアンテナモデルは手法1と全く同様である。FR の考慮はない為、(2)式においてFR 行列 F を 無視することで観測行列は以下のようになる。

$$\begin{pmatrix} m_{hh} & m_{h\nu} \\ m_{\nu h} & m_{\nu \nu} \end{pmatrix} = \begin{pmatrix} 1 & C_2 F_R \\ C_1 & F_R \end{pmatrix}^T \begin{pmatrix} S_{hh} & S_{h\nu} \\ S_{\nu h} & S_{\nu \nu} \end{pmatrix} \begin{pmatrix} 1 & C_2 F_T \\ C_1 & F_T \end{pmatrix}$$
(4)

使用する反射器は、

➤偏波保存型反射器 (Trihedral or Plate)

►水平偏波選択型反射器 (H-Selective)

の2基である。観測データから得られる2つの観測行列を解くことにより、以下のようにアンテナ係数が 求まる。

$$F_{T} = \pm \sqrt{\frac{m_{vv}^{tri}}{m_{hh}^{tri}} \cdot \frac{m_{hv}^{h-sel}}{m_{vh}^{h-sel}}} \quad , \quad F_{R} = \frac{m_{vv}^{tri}}{m_{hh}^{tri}} / F_{T} \quad , \quad C_{2} = \frac{m_{hv}^{h-sel}}{m_{hh}^{h-sel}} \cdot \frac{1}{F_{T}} \quad or \quad \frac{m_{vh}^{h-sel}}{m_{hh}^{h-sel}} \cdot F_{T} \quad , \quad C_{1} = \left(\frac{m_{hv}^{tri}}{m_{hh}^{tri}} - \frac{m_{hv}^{h-sel}}{m_{hh}^{h-sel}}\right) / F_{T} \quad or \quad \left(\frac{m_{vh}^{tri}}{m_{hh}^{tri}} - \frac{m_{vh}^{h-sel}}{m_{hh}^{h-sel}}\right) / \left(\frac{m_{vv}^{tri}}{m_{hh}^{tri}} \cdot F_{T}\right)$$
(5)

2.3 提案手法

この手法も送受信のアンテナモデルは手法1と同様であるが、まず FR 角の算出方法が以下のように異なる。

$$\Omega = \frac{1}{2} \tan^{-1} \left(-\frac{m_{vh}^{vi} \cdot m_{hv}^{vi}}{m_{hh}^{vi} \cdot m_{vv}^{vi}} \right)^{\frac{1}{2}}$$
(6)

手法1はFR角の算出においてH-Selective 反射器の同一偏波成分、特にVV成分の値に大きく依存する傾向が強く、クラッタなどによる影響を受け易いという欠点がわかっていた。これを全て偏波保存型反射器(Trihedral等)の観測値から算出することで、エラーの許容が大きくなるように(6)式のような形を選択した。使用する反射器は、

➤偏波保存型反射器 (Trihedral or Plate)

➤偏波回転型反射器 (Rotating)

の2基である。 F_R と F_T の計算は手法1と同様であるが、 C_l と C_2 の計算は以下のように行う。

1

$$C_{1} = \frac{1}{2m_{hh}^{tri}} \cdot \left(\frac{m_{hv}^{tri}F_{R} + m_{vh}^{tri}F_{T}}{F_{R}F_{T} + \frac{m_{vv}^{rot}}{m_{hh}^{rot}}} \right)$$
(7)

$$C_{2} = \frac{1}{2m_{hh}^{tri}} \cdot \left(\frac{m_{hv}^{tri}}{F_{T}} + \frac{m_{vh}^{tri}}{F_{R}}\right) - C_{1}$$
(8)

手法1は偏波回転型反射器に重点を置いており、他の反射器の較正結果に影響が出ていると考えた為、手法1よりも偏波保存型反射器の較正を重視するような式を選択した。

以上より、反射器のエコーを含む観測データがあれば全ての未知数を決定することができる。しかし、 一度求まった*R、T、F、S*が全く正しいという保証はない。例えば*R、T、F、S*がそれぞれ正しく分離で きていないという可能性も考えられる。そこで、求まった未知数より

 $F \cdot S \cdot F \tag{9}$

という行列を形成する。求まった値が正しいとすれば(9)式は、理想的な散乱行列に FR の影響が混入した ものである。しかし、(9)式にはまだアンテナ係数の残存分が残っている、または F、S がそれぞれ正しく 分離できていない、という考えの下に(9)式を新しい観測行列 M_I と考える。すると(9)式は以下のように書 くことができる。

$$F \cdot S \cdot F = M_1 = R_1^t \cdot F_1 \cdot S_1 \cdot F_1 \cdot T_1 \tag{10}$$

この新しい観測行列 M1 に対して、(6)~(8)式を適用することで R1、T1、F1、S1 が求まる。さらに、

$$F_1 \cdot S_1 \cdot F_1 = M_2 = R_2^t \cdot F_2 \cdot S_2 \cdot F_2 \cdot T_2$$
(12)

とすることで新しく R_2 、 T_2 、 F_2 、 S_2 を求めることができる。これを FR 角の値が収束するまで n 回繰り 返す。以上より最終的な観測行列は、

$$M = R^{t} \cdot F \cdot S \cdot F \cdot T$$

$$= (R^{t}) \cdot R_{1}^{t} \cdot F_{1} \cdot S_{1} \cdot F_{1} \cdot T_{1} \cdot (T)$$

$$= (R^{t} \cdot R_{1}^{t}) \cdot R_{2}^{t} \cdot F_{2} \cdot S_{2} \cdot F_{2} \cdot T_{2} \cdot (T_{1} \cdot T)$$

$$M = (R^{t} \cdot R_{1}^{t} \cdots R_{n}^{t}) \cdot F_{n} \cdot S_{n} \cdot F_{n} \cdot (T_{n} \cdots T_{1} \cdot T)$$
(13)

となる。添え字nはn回目の計算値であることを示す。よってR、T、F、Sは以下のように決定される。

$$R = (R^t \cdot R_1^t \cdot R_2^t \cdot \dots \cdot R_{n-1}^t \cdot R_n^t)$$
(14)

$$T = (T_n \cdot T_{n-1} \cdot \dots \cdot T_2 \cdot T_1 \cdot T)$$
(15)

$$F = F_n \tag{16}$$

$$S = S_n \tag{17}$$

3. 数値シミュレーションによる FR 角推定

ここでは、手法1と提案手法についてFR角の推定精度を調べるべく、数値シミュレーションによるFR角の推定を行う。シミュレーション内容は観測行列にノイズを混入させ、FR角の推定を行うというものである。ノイズが混入した場合の観測行列は以下のようになる。

$$M = RSFST + N$$

$$= \begin{pmatrix} 1 & 0.1 \\ 0.1 & 0.7 \end{pmatrix} \begin{pmatrix} \cos\Omega & \sin\Omega \\ -\sin\Omega & \cos\Omega \end{pmatrix} \begin{pmatrix} S_{hh} & S_{h\nu} \\ S_{\nu h} & S_{\nu \nu} \end{pmatrix} \begin{pmatrix} \cos\Omega & \sin\Omega \\ -\sin\Omega & \cos\Omega \end{pmatrix} \begin{pmatrix} 1 & 0.1 \\ 0.1 & 0.7 \end{pmatrix} + \begin{pmatrix} n & n \\ n & n \end{pmatrix}$$
(18)

ここで、送受信アンテナは共通であるとし、クロストークは ALOS/PALSAR アンテナの偏波分離度の設計値が-25dB であるということから、それよりも少し条件の悪い 0.1 とした。シミュレーション条件は以下の通りである。

Ω	:	$0^{\circ} \sim 40^{\circ}$, 1° step	
ノイズの絶対値[n]	:	-60dB \sim -15dB , 5dB step	
ノイズの位相	:	$0^{\circ} \sim 315^{\circ}$, 45° step	

横軸に|n|、縦軸に推定値誤差の絶対値を取りグラフにしたものが Fig.1 である。グラフ上の値は、任意の|n |において算出される全ての推定結果の平均である。

Fig.1 一様のノイズが混入した場合の手法1と提案手法のFR角推定誤差

次に、先と同様のシミュレーション条件でnの絶対値と位相に乱数を掛けることで、各偏波チャンネル で値が異なる場合について、FR 角推定シミュレーションを行った。その結果が Fig.2 である。

Fig.2 各チャンネルで値の異なるノイズが混入した場合の手法1と提案手法のFR 角推定誤差

以上の結果より、ノイズが混入した場合においては、提案手法の方が手法1よりもFR角の推定精度は 高いことがわかる。提案手法が偏波保存型反射器の値のみからFR角を計算するのに比べて、手法1では H-Selective 反射器の値も使う。

$$M = F \cdot S \cdot F$$

という行列を考えた場合、偏波保存 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ と H-Selective $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ の観測値 $M^{tri} \ge M^{t-sel}$ は、

$$M^{tri} = \begin{pmatrix} \cos^{2} \Omega - \sin^{2} \Omega & 2\sin \Omega \cos \Omega \\ -2\sin \Omega \cos \Omega & \cos^{2} \Omega - \sin^{2} \Omega \end{pmatrix}$$

$$M^{h-sel} = \begin{pmatrix} \cos^{2} \Omega & \sin \Omega \cos \Omega \\ \sin \Omega \cos \Omega & -\sin^{2} \Omega \end{pmatrix}$$
(20)

となる。ここで、Ωが0~45の値を取り得るとした場合、値M^{rri}の各要素のダイナミックレンジは1であ り、対して M^{hsel}は 0.5 である。このレンジの間に同じ値のノイズが混入するとすれば、M^{hsel}の値を用い る手法1の方が、誤差を生み易くなると考えられる。以上の理由で、提案手法の方が推定精度が良いと考 えられる。

尚、ターゲットエラーやアンテナエラーが混入した場合についてもシミュレーションを行ったが、FR 角の推定精度は提案手法の方が良い結果となることを確認している。

4. PALSAR 計測データによる検証

ALOS データ較正・評価(CAL/VAL)の一環として、2006 年 6 月~10 月に渡り計 5 回の PALSAR 観測実 験を行った。実験サイトは東京都武蔵村山市にある旧日産村山工場跡地であり、140ha もの裸地が広がっ ている。Table.1 に観測スケジュールを、Fig.3 に用いた反射器の外観を示す。

Date	Time(UT)	Mode	Orbit	Elev(deg)	Azim(deg)
2006-June-18	12:56	PLR21.5	Ascend	65.95	256.81
2006-July-21	01:18	PLR21.5	Descend	66.47	103.19
2006-Aug-3	12:56	PLR21.5	Ascend	65.74	256.81
2006-Sept-5	01:18	PLR21.5	Descend	66.47	103.19
2006-Oct-21	01:18	PLR21.5	Descend	66.47	103.19

Table.1 ALOS 較正実験観測スケジュール

Trihedral

H-Selective

Rotating

plate はアルゴリズム内には用いず、較正結果の評価用とした。以下、現時点で解析が進行中である 8,9,10 月のデータについて示す。

まずはFR角の推定結果について以下のTable.2に示す。Table.2には情報通信研究機構(NICT)から提供し て頂いた上空の TEC (Total Electron Content) 値も載せてある[3]。この値は GPS 衛星の電波を基に計算さ れた TEC 値であり、15 分毎に算出されている為、観測時間に一番近い時刻の値を代表している。TEC が FR 角に及ぼす影響は大きい為、FR 角の程度を知る上で大きな指標となる。

またその TEC 値を使い、以下のようなシンプルモデルで FR 角の計算を行った。

$$\Omega = \frac{K}{f^2} \times TEC \times B\cos\phi \quad [rad]$$
⁽²⁰⁾

ここでK: 2.365×10⁴の定数、f[Hz]: 観測周波数、TEC [TECU = ×10¹⁶ el/m²]: 上空の全電子数、B[T]: 磁束密 度、 # [rad]: 電波進行方向に対する地球磁場ベクトルのなす角である。 B は日本付近の値として 45000[nT] Descending で 38.1°を用いた。しかし厳密な φの値を知ることは困難であること、代入する TEC 値は GPS 衛星の高度までの値であること、式が簡略化されたものであること、等の理由によりシンプルモデルでの 計算はあくまで一つの指標にしかすぎないことに注意が必要である。

また、国土地理院が保有する GPS 連続観測システム(GEONET: GPS Earth Observation Network System)を 用いて計算された、日本周辺の TEC の分布が Web で公開されている[4]。[4]による観測時刻における TEC の分 布を Fig.4 に示す。GEONET とは、全国約 1,200 ヶ所に設置された電子基準点とGPS 中央局(茨城県つくば市) からなる、高密度で高精度な測量網の構築と広域の地殻変動の監視を目的とした連続観測システムである。こち らは 10 分毎のデータとなるため、観測時刻に最も近いデータを載せている。

	2006/08/03	2006/09/05	2006/10/21		
	(Ascending)	(Descending)	(Descending)		
TEC (TECU)	10.5	10.3	21.9		
シンプルモデル計算	-2.7	-3.0	-6.5		
手法1	-16.8°	-9.57°	-14.5°		
提案手法	-0.22°	-2.09°	-5.05°		

Table.2 各手法により推定された FR 角

Table.2 より、提案手法は概ね妥当な FR 角を算出していると思われるが、手法1は FR 角の推定にエラーがあ ると考えられる。理由としてはまず、GPS 衛星のまでの高度の TEC を用いて計算された値を大きく上回っている こと。さらに十数度の FR が発生したとすれば、配布されたデータに既に影響があるはずだと考えられるが、配布 データには 10/21 分を除いて FR が影響した様子は見られなかった。10/21 分には FR が影響している形跡があ り、これについては後ほど議論したい。また、Table.2 の TEC と Fig.4 を比べると、明らかに同様のトレンドがあるこ とがわかる。

解析が比較的進んでいる 08/03 のデータについて、その較正結果を示す。評価はアルゴリズムから完全 に独立している Plate の較正結果について行う。Plate の較正値の散乱行列を示す。

	HH	HV/HH	VH/HH	VV/HH
理想	1∠0	0∠0	0∠0	1∠0
観測値	1∠0	0.017∠31.3	0.056∠-175.4	0.79∠25.5
EORC	1∠0	0.045∠151.1	0.015∠73.7	1.06∠1.9
手法1	1∠0	0.69∠164.4	0.62∠22.1	1.05∠3.0
手法2	1∠0	0.017∠-173.6	0.075∠-112.6	1.03∠3.1
提案手法	1∠0	0.022∠-69.1	0.057∠-170.4	1.02∠3.2

Table.3	2006/08/03(Ascending)デー	-タの Plate	の散乱行列
---------	-------------	--------------	-----------	-------

「EORC」は宇宙航空研究機構(JAXA)の地球観測推進センターによる較正値である。手法1は VV/HH は 良好に較正されているものの、大きく算出された FR 角が原因で X-Pol 成分にエラーをもたらしている。 手法2と提案手法は Plate に関してほぼ EORC と同程度の較正が行われている。

次に偏波シグネチャ、偏波シグネチャ差を示す。

ここで偏波シグネチャ差(Matching Index of polarization signature : 以下 MI)について説明を加える。MI と は理想的なシグネチャ σ_1 と較正後のシグネチャ σ_2 の差の絶対値を

$$-\frac{\pi}{4} \leq \chi \leq \frac{\pi}{4} \quad , \quad 0 \leq \phi \leq \pi$$

に渡って積分した値であり、以下のように表わされる。

$$MI = \int_0^{\pi} \int_{-\pi/4}^{\pi/4} \left| \sigma_1 - \sigma_2 \right| d\chi d\phi$$
⁽²¹⁾

計算の際、全電力がどの散乱行列でも1となるよう以下の規格化が行われている。

$$\widetilde{S} = \frac{1}{\sqrt{S_{hh}^2 + S_{hv}^2 + S_{vh}^2 + S_{vv}^2}} \begin{pmatrix} S_{hh} & S_{hv} \\ S_{vh} & S_{vv} \end{pmatrix}$$
(22)

偏波シグネチャは較正値の良し悪しを視覚的に把握できるが、厳密な値としての指標にはなりにくい。MI であれば1個のパラメータで、定量的に較正値のエラーを比較することが出来る。Co-PolのMIを Co-MI、 X-PolのMIを X-MIと呼ぶこことする。

以下に 2006/08/03 に取得したデータの Plate の Co-Pol 偏波シグネチャと Co-MI を示す。Co-MI について はそのパーセント表示も括弧内に示す。

Fig.9には X-MIの値も追記してある。ここまで見る限り、手法2と提案手法は Plateの較正結果に関して同程度の較正精度であることがわかる。しかし、手法2は使用反射器の Trihedral と H-Selective を重点的に理想に持っていこうとするあまり、偏波回転型反射器の較正値に大きなエラーを招いている。以下に、較正前・手法2・提案手法について Rotating の散乱行列と、X-Pol の偏波シグネチャを示す。

1.

2000/00/02/

Table.4 2006/08/05 (Ascending) 7 - 9 05 Rotating 05 [8261/194]				
	HH/VH	HV/VH	VH	VV/VH
理想	0∠0	1∠0	1∠0	0∠0
較正前	0.23∠-133.3	0.71∠27.6	1∠0	0.092∠-42.3
EORC	0.23∠-108.6	1∠-2.97	1∠0	0.14∠-48.3
手法1	0.0016∠-259.7	1∠-0.06	1∠0	0.0008∠-178.5
手法2	0.17∠148.9	0.58∠146.8	1∠0	0.10∠200.0
提案手法	0.26∠-110.6	1∠0.14	1∠0	0.13∠-41.8

Table.4、Fig.10より手法2はRotatingの較正値にエラーをきたしており、散乱行列と偏波シグネチャは大きく歪んでしまっている。提案手法はCo-Polの値が少し大きいが、手法2に比べると良好だと言える。手法1は理想値に較正されているが、手法1はFR角推定の正誤に関わらず、Rotatingを強引に理想値に導く傾向が強いことを確認している。その影響を受け、偏波保存型反射器の較正値にエラーを招く結果となっており、Fig.10 での手法1の較正結果だけを見て良いと判断することはできない。

以上の結果より、手法1、手法2、提案手法では、提案手法が反射器の較正値の評価において優れている と考えられる。 次に、10/21分のデータへのFRの影響について述べる。

同データにおける FR 角の推定は、提案手法が-5.05°、シンプルモデルによる計算が-6.5°であった。TEC 値も 08/03、09/05 に比べて 2 倍はあり、少なくとも両日のデータよりも FR の影響が混入している可能性 は高い。そこで 10/21 データ Plate の較正前、EORC による較正結果、提案手法による較正結果について、以下に散乱行列、振幅強度画像、Co-Pol 偏波シグネチャを示す。

		C C		
	HH	HV/HH	VH/HH	VV/HH
較正前	1∠0	0.12∠10.6	0.18∠-169.9	0.76∠23.8
EORC	1∠0	0.18∠10.1	0.17∠174.0	1.02∠4.0
提案手法	1∠0	0.013∠-151.5	0.014∠27.2	0.89∠-1.42

Table.5 2006/10/21(Descending)データの Plate 較正後の散乱行列

Fig.11 2006/10/21(Descending)データ Plate の較正後 振幅強度画像(左, R:G:B=HH:HV:VH)と Co-Pol 偏波シグネチャ(右)

Fig.11の振幅強度画像について、Plateは理想的にはHHの赤とVVの青が混ざり紫色で表現されるはずである。Fig.11では提案手法は紫色に表現されているが、EORCによるFRの考慮のない較正結果、及び較正前は白みがかって表されている。RGB表色系では赤・青・緑が全て混ざったときに、白色で表現される。緑が混ざるとい

うことはつまり、HV,VHの成分が出てきているということであり、そのことは Table.5 からも明らかである。

また、偏波シグネチャを見ても、提案手法は Co-Pol のインバランスがあるものの概ね理想に近い。一方で EORC による較正結果では、交差偏波成分の影響でシグネチャが歪んでしまっている。

我々が観測を行った 10/21 以前の 4 回分については全て TEC は 10 前後であり、EORC の較正値への影響 が明確には見られなかったが、10/21 データに限っては TEC 値の増加と同時に上述のような現象が見られた。

FR が影響すれば偏波保存型反射器の X-Pol 成分は増大する。しかしこれら全てのことが FR の影響であると 現時点では断定できないが、大いに興味深い部分であり、現在検証を進めている。

5. まとめ

衛星搭載 SAR のポラリメトリック較正に関して、FR の影響の除去、少数の反射器を用いて少ない仮定の下に 簡単で正確な較正が行えることを念頭に置き、従来の手法と新しい提案手法を実際の PALSAR データに適 用した。

手法1はFR角の推定精度が低く、FR角の推定エラーが較正結果にエラーを導いていると考えられる。この 点は Ω の算出において H-selective の同一偏波成分に強く依存しているアルゴリズムである為、H-selective の RCSを大きくするかクラッタの影響などを評価することで改善が出来ると考えている。

手法 2 は偏波保存型反射器に関して良好な較正結果が得られるが、他の反射器の較正値にエラーを招く結果となった。

提案手法はFR角推定に関してシミュレーション、実データを通じ概ね妥当な値が推定されていると思われる。 反射器の較正結果に関しても、特に大きなエラーはないが、偏波回転型の較正精度向上が課題である。また 10/21 データにはFRの影響と思われる測定結果が得られたが、その場合でも提案手法ではFRの影響を補償し た較正が実現されていると考えられる。

以上より、FRの影響の除去、少数の反射器で簡単で正確な較正、PALSAR 観測データの較正結果、この3つの観点において提案手法が最も優れた較正手法であると言える。

謝辞

PALSAR データは、ALOS データ較正・評価(CAL/VAL)作業の一環として得られ、データを提供頂いた JAXA に感謝致します。TEC データを提供して頂いた NICT、及び国土地理院に感謝致します。実験サイトを提 供頂いた宗教法人真如苑に感謝致します。

参考文献

[1] Masaharu Fujita : "Polarimetric calibration of synthetic aperture radar data subject to Faraday rotation", Proc. 2005 IEICE General Conf., B-1-16, CD-ROM, March 2005, Osaka Univ., Japan.

[2] Masaharu Fujita , Chikage Murakami : "Polarimetric calibration method using polarization-preserving and polarization-selective reflectors", IEICE Trans. Commun., VOL. E88-B NO.8, pp.3428-3435, AUGUST 2005.

[3] Ma, G, and T. Maruyama, Derivation of TEC and estimation of instrumental biases from GEONET in Japan, Ann. Geophys., 2083-2093, 2003.

[4] HP: http://stegps.kugi.kyoto-u.ac.jp/